
Towards Grounded Natural Language Proof
Generation

Sean Welleck1,2, Jiacheng Liu1, Jesse Michael Han3, Yejin Choi1,2
1University of Washington

2Allen Institute for Artificial Intelligence, 3OpenAI
wellecks@uw.edu

Abstract

When a student is working on a mathematical proof, it is often helpful to receive
suggestions about how to proceed. To this end, we provide an initial study of two
generation tasks in natural mathematical language: suggesting the next step in
a proof, and full-proof generation. As proofs are grounded in past results– e.g.
theorems, definitions– we study knowledge-grounded generation methods, and
find that conditioning on retrieved or ground-truth knowledge greatly improves
generations. We characterize error types and provide directions for future research.

1 Introduction

Proving a mathematical claim involves constructing an argument that is grounded in knowledge from
past results, including previously proved theorems, established definitions and equations, as well as
similarly structured arguments. Moreover, proofs require multi-step, logically consistent arguments,
rather than extracting a span of text, producing an abstractive summary, or answering a question, thus
complimenting existing knowledge-intensive tasks studied in natural language processing.

We provide a preliminary study of two proof generation tasks using the recently released NATURAL-
PROOFS dataset [Welleck et al., 2021]: next-step suggestion, where a model generates the next step of
the proof, given a statement and the preceding proof steps, and full-proof generation, where a model
generates a complete proof. The next-step setting is motivated by educational applications, such as
a student querying the system for hints, and is inspired by ML-based tactics in interactive (formal-
ized) proof assistants, such as the gpt-f tactic [Han et al., 2021]. Full proof generation presents a
challenging, long-form generation task. As each proof contains statements that are grounded in past
results– theorems, definitions, etc – we empirically study various knowledge-grounded generation
methods, and provide baseline task definitions and metrics.

We find that conditioning on reference information substantially improves the quality of generated
proofs. We provide results with knowledge from retrieved references, which show modest but
nontrivial gains over baselines that rely on parametric, closed-book knowledge, and results with
knowledge from ground-truth references that yield substantial improvements. We inspect and
characterize the generations, finding that even with access to ground-truth knowledge, models
can produce mathematically incorrect statements (e.g. generating lnx = 1

x without writing d
dx),

hallucinate references, and produce proofs that are shorter than those written by humans, leaving
room for progress on improving and automatically evaluating machine-generated mathematics.

2 Tasks

For both of our tasks we use the NATURALPROOFS dataset, a multi-domain corpus of theo-
rems, definitions, and proofs in natural mathematical language. We use the PROOFWIKI do-

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Workshop on Math AI for Education
(MATHAI4ED).

main of NATURALPROOFS in our experiments, which provides broad coverage of predominantly
undergraduate-level mathematics. NATURALPROOFS pairs theorems x and their proofs y, where x
and y are variable-length token sequences. Each proof contains references to previous definitions,
theorems, or other pages from a reference setR. For instance, the proof of Equivalence Class is
not Empty contains references to Equivalence Class and Empty Set. Refer to Welleck et al.
[2021] for further details about NATURALPROOFS.

Next-step suggestion. When a student or researcher is working on a proof, it is often helpful to
receive suggestions about how to proceed. We envision a system in which a user scans a list of
suggested next-steps, analogous to machine-learning based suggestions in interactive theorem provers.
Next-step suggestion is the related task of suggesting a set of next steps {y(k)t }Kk=1 of a proof, given a
theorem statement x and preceding steps y<t. This task assumes that each proof is segmented into
a variable number of steps, y = (y1, . . . , yT), where each step is a variable-length token sequence
yt = (w1, . . . , wL), which is the case for the PROOFWIKI domain of NATURALPROOFS. Next-step
suggestion is analogous to next-utterance prediction in dialogue modeling, the task of predicting the
next turn of a conversation (e.g. Zhang et al. [2018]). In this setting, dialogue models use ground-truth
conversation histories, analogous to using ground-truth proof histories.

Full proof generation. Full proof generation is the task of generating a full proof y = (y1, . . . , yT)
given a theorem statement x. Naturally, a next-step suggestion model can be used for full proof
generation, and vice-versa. Continuing the analogy with dialogue, a next-utterance model can be
evaluated in a full dialogue setting, in which the conversation history consists of model generations.

2.1 Evaluation metrics.

Evaluating proofs that are generated in natural mathematical language is challenging, as there is not
direct access to a verifier. Nevertheless, existing knowledge-intensive generation tasks in NLP face a
similar state-of-affairs: for instance, the KILT benchmark [Petroni et al., 2021] relies on F1-score
for evaluating knowledge-grounded dialogue [Dinan et al., 2019] and ROUGE for long-form QA
[Fan et al., 2019]. Like our setting, these tasks also typically rely on a single ground-truth output,
despite there being many valid possibilities. Here, we use simple metrics for evaluating the content
and knowledge grounding in generated proofs. An interesting research direction is automatically
evaluating machine-generated mathematics to improve upon the foundation that we establish here.

Lexical content metrics. To evaluate the language modeling quality of each model, we use held-out
perplexity. To compare each generated proof against its ground-truth counterpart, we use sentence-
BLEU, METEOR, and edit distance.

Knowledge grounding metrics. We define knowledge grounding as meaning that a generated proof
contains the same references as those found in the ground-truth proof, as measured by precision,
recall, and F1 score between the reference sets contained in the generated and ground-truth proofs.

Multiple candidate evaluation. The next-step setting simulates providing a user with suggestions
about which step to take next in a proof. Since the user is free to choose from among the suggestions,
we measure metrics using the best per-example metric out of each suggestion set.

3 Methods

As our base conditional language model we use BART [Lewis et al., 2020a], an encoder-decoder
model pretrained with denoising tasks on natural language text. We consider two paradigms for
enabling the model to ground its generations in knowledge contained in references.

Intermediate denoising training. Neural language models have demonstrated an ability to act as
knowledge bases, generating facts when suitably prompted [Petroni et al., 2019]. To see whether this
impacts knowledge-grounded proof generation, we train a model to denoise training theorems, proofs,
and references, with various denoising tasks. Intuitively, the model can store reference knowledge
and deploy it at generation time. This paradigm is limited, as the model cannot access non-training
references and is not told which references it should use to ground its generations at test-time.

Knowledge-grounding methods. Various methods augment the model’s input with sequences
containing knowledge used to ground generations. We use Fusion-in-Decoder [Izacard
and Grave, 2020], an encoder-decoder architecture that encodes reference-augmented inputs,

2

Lexical Grounding

Model Knowledge SBleu-2 SBleu Meteor Edit Prec Rec F1
BART – 6.84 3.75 12.55 94.02 18.14 9.63 10.96
BART-FID Retrieved refs (8) 8.21 4.37 14.10 94.49 21.07 13.04 13.79
BART-FID Retrieved refs (20) 6.31 3.58 11.75 93.38 23.21 11.98 13.81
BART-FID Ground-truth titles (20) 9.46 5.90 15.99 91.69 56.73 33.13 38.65
BART-FID Ground-truth refs (8) 8.19 5.22 14.89 91.11 61.40 31.89 39.05
BART-FID Ground-truth refs (20) 9.54 6.10 15.93 91.00 63.54 33.90 41.00

Table 1: Automatic metrics for full proof generation.

Theorem Co-Countable Measure is Probability Measure
Let X be an uncountable set.
Let A be the σ-algebra of countable sets on X .
Then the co-countable measure µ on X is a probability measure.

BART Proof by induction: For all n ∈ N>0, let P (n) be the proposition µ on X .
P (1) is the case: µ (1) =

⋃∞
n=1 {1, 2, . . .} which is trivially true,

as A is a σ-algebra of countable sets.
This is our piecewise disjoint axioms for the induction.
Now we need to show that, if g(j) is true, where j ≥ 1, then it logically follows that
gj+1(j + 2)≥ g(j + 1) for all j such that 1 ≤ j ≤ 1, and hence d(j, j) = µ(j, k)!
...

BART-FID By Co-Countable Measure is Measure, µ is a probability measure.

BART-FID+denoise From Co-Countable Measure is Measure, µ is a measure.
From Relative Complement with Self is Empty Set: CS(X) = ∅
Hence the result.

Ground-truth By Co-Countable Measure is Measure, µ is a measure.
By Relative Complement with Self is Empty Set, have XC (X) = ∅.
As ∅ is countable, it follows that X is co-countable.
Hence µ (X) = 1, and so µ is a probability measure.

Table 2: Full-proof generation example. The colors denote: Undefined term. Hallucinated reference.
Non-ground-truth reference. Improper/irrelevant statement. Does not follow. Term appears in
reference. Ground-truth reference.

(r1,x), (r2,x), . . . , (rK ,x), into a sequence of vectors that are attended to by the decoder. An
interesting future work direction is providing references at decoding time rather than through the
architecture [Lu et al., 2021]. We consider two settings for the references r1, . . . , rK : (i) ground-truth
references, analogous to document-grounded generation tasks [Prabhumoye et al., 2021], and (ii)
retrieved references, analogous to retrieval-augmented generation [Lewis et al., 2020b].

Decoding. For full proof generation, we use beam search, and for next-step suggestion we gener-
ate four suggestions: the top beam candidate, and 3 candidates sampled with ancestral sampling.
Designing algorithms for multi-step proofs or better suggestion selection is interesting future work.

4 Experiments

Automatic metrics for full-proof generation are shown in Table 1. Providing the model with knowledge
improved the lexical content and knowledge grounding in generated proofs. Providing retrieved
references yielded modest improvements, while ground-truth references yielded large improvements
of roughly 3 points on 2-gram sentence-bleu and 30 points on F1. Increasing the number of
ground-truth references to 20 and using the full reference content versus only the title gave the best
performance. As seen in Table 5, denoising results in lower perplexity, but without guaranteeing
better generations. The example generation in Table 2 shows that providing knowledge can yield
major differences in the subjective quality of generated content.

The next-step metrics (Table 3) indicate similar patterns, though without improved lexical metrics
using retrieved references. Denoising improved lexical quality across all metrics, at a small cost to
knowledge grounding. Altogether, the results indicate that grounding the model’s generation through

3

Lexical Grounding

Model Knowledge SBleu-2 SBleu Meteor Edit Prec Rec F1
BART – 12.34 7.62 14.42 86.63 6.02 5.24 5.32
BART-FID Retrieved refs (8) 11.83 7.34 14.46 87.59 6.29 6.93 6.22
BART-FID Ground-truth refs (8) 13.01 8.18 15.46 85.96 14.70 13.82 13.62
BART-FID+denoise Ground-truth refs (8) 13.48 8.45 16.41 85.77 14.28 13.43 13.14

Table 3: Automatic metrics for next-step suggestion.

Proof History By Co-Countable Measure is Measure, µ is a measure.

Ground-truth By Relative Complement with Self is Empty Set, have XC (X) = ∅.

BART - Proof by induction:
- By definition, the co-countable measure µ on X is:
- By definition, µ is a probability measure iff:
- Let A be the co-countable measure on X .

BART-FID - By Relative Complement with Self is Empty Set:
- The result follows from Relative Complement with Self is Empty Set:
- The result follows from Relative Complement with Self is Empty Set and

Relation Complement is Self-Empty Set.
- qed

BART-FID + denoise - From Relative Complement with Self is Empty Set:
- The result follows from Relative Complement with Self is Empty Set:
- The result follows from Relative Complement with Self is Empty Set:
- qed

Table 4: Next-step suggestion example. The colors denote: Undefined term. Hallucinated reference.
Reference not in entire ground-truth proof. Improper statement. Does not follow. Reference in
ground-truth next step.

conditioning on knowledge is important, and the results show room for improvement in both the
retrieval-augmented and document-grounded settings.

Case study – characterizing quality. In Tables 2 and 4 we analyze example generations for full
proof and next-step generation, respectively, to (i) study the potential impact of conditioning on
reference knowledge, and (ii) better understand errors to motivate research on improved generation
methods and automatic evaluation of mathematical content.

Denoise Knowledge PPL SBleu F1
X GT-refs (8) 1.884 5.42 36.59
X – 1.940 3.66 8.98
– GT-refs (8) 2.024 5.22 39.05
– – 2.041 3.75 10.96

Table 5: Perplexity versus generation metrics
for models with intermediate denoising training
and without. Lower perplexity did not always
imply better generation metrics.

We identify five error types: (1) hallucinated ref-
erences, meaning the reference does not occur in
NATURALPROOFS; (2) non-ground-truth reference,
meaning the reference does not occur in the ground-
truth proof; (3) undefined terms; (4) improper or
irrelevant statement, meaning a statement that is
mathematically invalid (e.g. 2

3 ∈ Z) or irrelevant
to the proof; and (5) statements that do not follow
logically from the preceding statements. We also
identify two positive properties: (A) using a term
from a ground-truth reference, and (B) referring to
a ground-truth reference. Properties (1), (2), (A),
and (B) are currently feasible to automatically evaluate. An interesting research topic is automatically
evaluating (3), (4), and (5), and testing whether these properties correlate with experts’ proof quality.

5 Conclusion

We report initial results on two new knowledge-grounded generation tasks with educational implica-
tions: next-step suggestion and full-proof generation. The results indicate the importance of providing
grounded knowledge to the model, and suggest future directions for improving performance in the
document-grounded and retrieval-augmented settings, decoding algorithms that provide knowledge
and leverage the proof structure, and automatically evaluating machine-generated content.

4

References
E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. Wizard of Wikipedia: Knowledge-

powered conversational agents. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli. ELI5: Long form question answering.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1346. URL https://aclanthology.org/P19-1346.

J. M. Han, J. Rute, Y. Wu, E. W. Ayers, and S. Polu. Proof artifact co-training for theorem proving
with language models, 2021.

G. Izacard and E. Grave. Leveraging passage retrieval with generative models for open domain
question answering, 2020.

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettle-
moyer. BART: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7871–7880, Online, July 2020a. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/2020.
acl-main.703.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kuttler, M. Lewis, W. tau Yih,
T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-intensive
nlp tasks. ArXiv, abs/2005.11401, 2020b.

X. Lu, P. West, R. Zellers, R. Le Bras, C. Bhagavatula, and Y. Choi. NeuroLogic decod-
ing: (un)supervised neural text generation with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 4288–4299, Online, June 2021. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.339. URL https:
//aclanthology.org/2021.naacl-main.339.

F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller. Language
models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China, Nov. 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/
D19-1250.

F. Petroni, A. Piktus, A. Fan, P. Lewis, M. Yazdani, N. De Cao, J. Thorne, Y. Jernite, V. Karpukhin,
J. Maillard, V. Plachouras, T. Rocktäschel, and S. Riedel. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 2523–2544,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
200. URL https://aclanthology.org/2021.naacl-main.200.

S. Prabhumoye, K. Hashimoto, Y. Zhou, A. W. Black, and R. Salakhutdinov. Focused attention
improves document-grounded generation. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 4274–4287, Online, June 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.naacl-main.338. URL https://aclanthology.org/2021.naacl-main.338.

S. Welleck, J. Liu, R. L. Bras, H. Hajishirzi, Y. Choi, and K. Cho. Naturalproofs: Mathematical
theorem proving in natural language. In NeurIPS 2021 Track on Datasets and Benchmarks, 2021.

S. Zhang, E. Dinan, J. Urbanek, A. Szlam, D. Kiela, and J. Weston. Personalizing dialogue agents: I
have a dog, do you have pets too? In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 2204–2213, Melbourne, Australia,
July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1205. URL https:
//aclanthology.org/P18-1205.

5

https://aclanthology.org/P19-1346
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2021.naacl-main.339
https://aclanthology.org/2021.naacl-main.339
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://aclanthology.org/2021.naacl-main.200
https://aclanthology.org/2021.naacl-main.338
https://aclanthology.org/P18-1205
https://aclanthology.org/P18-1205

Theorem Co-Countable Measure is Probability Measure
Let X be an uncountable set.
Let A be the σ-algebra of countable sets on X .
Then the co-countable measure µ on X is a probability measure.

Proof By Co-Countable Measure is Measure, µ is a measure.
By Relative Complement with Self is Empty Set, have XC (X) = ∅.
As ∅ is countable, it follows that X is co-countable.
Hence µ (X) = 1, and so µ is a probability measure.

Table 6: An example theorem and proof from the PROOFWIKI domain of NATURALPROOFS. Each
reference mention is underlined (the surface form when available and the identifier otherwise).

A Dataset Details

We provide an overview of NATURALPROOFS and its PROOFWIKI domain that we use in our
experiments. Refer to [Welleck et al., 2021] for further details.

The NATURALPROOFS Dataset is a large-scale, multi-domain dataset for studying mathematical
reasoning in natural language. NATURALPROOFS consists of 32k theorem statements and proofs,
14k definitions, and 2k other types of pages (e.g. axioms, corollaries), drawn from three domains.
We focus on the PROOFWIKI domain, which provides broad-coverage data that encompasses many
mathematical topics (e.g. Set Theory, Analysis) sourced from ProofWiki, an online compendium of
mathematical proofs written by a community of contributors.

The PROOFWIKI domain contains 19,734 theorems, 19,234 proofs, 12,420 definitions, and 1,006
additional pages (e.g. axioms, corollaries). We refer to the set of all 19, 734 + 12, 420 + 1, 006 =
33, 160 theorems, definitions, and additional pages as the reference set R, and refer to items inR as
references. In PROOFWIKI, 14,698 theorems x are paired with at least one proof y. We refer to these
theorem-proof pairs as examples D = {(x,y)i}Ni=1. Table 6 shows an example. Welleck et al. [2021]
split the examples into training, validation, and test splits to ensure that no theorem in the validation
or test splits was mentioned in the training set. We denote the example splits as Dtrain|valid|test, and the
set of references occurring in each split asRtrain|valid|test.

Each proof y = (y1, . . . , y|y|) is a variable-length sequence of steps, where each step yt is a variable-
length sequence of tokens (either text or Latex). The segmentation into steps is determined by
ProofWiki’s formatting and community standards for structuring proofs. Each proof y contains
reference mentions (r1, . . . , rM) where M can vary. A reference mention consists of an iden-
tifier and (optional) surface form, r = (rid, rsurface), concretely formatted as [[ID|SURFACE]].
For instance, in Table 6, the proof shows the surface form “measure” for reference identifier
“Definition:Measure (Measure Theory)”, which would be formatted as [[Definition:Measure
(Measure Theory)|measure]]. Any theorem, definition, page, or proof can contain reference
mentions. Finally, each reference (i.e. theorem, definition, or other page) consists of a title and
contents; for instance in Table 6 the title is shown in bold and the 3 non-bold lines form the contents.

B Implementation Details and Experimental Setup – BART/FID

In the sections below, we consider a conditional language model pθ(y|x) implemented as an encoder-
decoder architecture, specifically BART [Lewis et al., 2020a]. We describe our procedure for
intermediate denoising training (§B.1), augmenting the model with reference knowledge using
Fusion-in-Decoder [Izacard and Grave, 2020] (§B.2), and our experimental settings for full proof
generation (§B.4) and next-step suggestion (§B.5).

B.1 Intermediate denoising training

Prior to training pθ for proof generation, we consider training pθ to denoise referencesRtrain. Since
this occurs between BART’s large-scale pretraining and proof generation training, we refer to it
as intermediate denoising training. Specifically, let x be a reference (i.e. theorem and its proof,
definition, other page). Let the title, contents, and (when applicable) proof be denoted as xtitle,
xcontents, xproof, respectively. We consider the following tasks:

6

1. Masked language modeling. Randomly mask tokens in x to form xmasked, and predict the
masked tokens given xmasked.

2. Language modeling. Predict x given an empty sequence.

3. Reference generation. Predict the reference identifiers in xproof given xtitle and xcontents.
This task is only applicable when xproof is available.

4. Predict contents. Predict xcontents given xtitle.

5. Predict title. Predict xtitle given xcontents.

6. Reference infilling. Mask reference mentions in x to form xmasked, and predict the masked
tokens given xmasked.

We have not systematically investigated the benefits of any particular task. We select the task for each
sequence in a mini-batch at random. Investigating the effect of intermediate denoising training using
data sources beyond PROOFWIKI is interesting future work.

B.2 Fusion-in-Decoder

We use the Fusion-in-Decoder architecture [Izacard and Grave, 2020] to implement a model
pθ(y|x, r1, . . . , rK), where x is a theorem, y is a proof, and each rk is a reference. Fusion-in-
Decoder uses an underlying encoder-decoder architecture, which we implement using BART [Lewis
et al., 2020a]. Given an input theorem x, Fusion-in-Decoder encodes inputs (x, r1), . . . , (x, rK) in
parallel. Concretely, each input (x, rk) is formatted as,

Title:[title] Contents:[contents] Reference-title:[title] Reference-contents:[contents]

with the [] tokens omitted and the corresponding title or content strings inserted. The output
representations from the encoder are then concatenated to form h ∈ R(

∑
k `k)×d, where `k is the

number of tokens in (x, rk) and d is the representation dimension. The decoder’s cross attention
attends over h, allowing it to incorporate reference information.

Ground-truth references. Each example (x,y) pairs a theorem x with a ground-truth proof y.
The ground-truth proof has mentions of references (r∗1, . . . , r

∗
K) (where K varies). We refer to using

Fusion-in-Decoder with the inputs (x, r∗1), . . . , (x, r
∗
K) as the ground-truth reference setting. When

the theorem’s proof contains K ′ < K references, we provide the model with (K −K ′) additional
(x, ∅) inputs to allow for batching.

The ground-truth reference setting provides an oracle-bound on performance for retrieving references
from the ground-truth proof. In general, a model may benefit from references beyond those given
in the ground-truth proof, including references from external sources; investigating these settings is
interesting future work.

Retrieved references. Since ground-truth references may not be available at test-time in real-world
settings, we consider retrieving references (r̂1, . . . , r̂K) and providing Fusion-in-Decoder with inputs
(x, r̂1), . . . , (x, r̂K). We use a pretrained joint retrieval model f(x)→ (r1, . . . , r|R|) from [Welleck
et al., 2021]. The model is trained to retrieve the ground truth references (r∗1, . . . , r

∗
K) for an input

theorem x. The model achieves a Recall@10 of 42.90 and Recall@100 of 75.90, recovers all
ground-truth references in the top-10 20.35% of the time and in the top-100 50.22% of the time,
which gives an indication of how much noise is introduced compared to the ground-truth reference
setting. Training the retriever and generator jointly end-to-end is interesting future work.

Title-only variant. In the PROOFWIKI domain of NATURALPROOFS, the reference titles (i.e.
identifiers) provide a form of natural language ‘summary’ of each reference, for instance Relative
Complement with Self is Empty Set. To investigate whether the titles are effective forms
of knowledge, we use the same Fusion-in-Decoder architecture, but with a single input sequence
(x, r̃1, . . . , r̃K), where r̃k is a reference title, formatted as,

Title:[title] Contents:[contents] Reference-title:[title] ... Reference-title:[title]

Since the reference titles are short, they can be processed as a single sequence.

7

B.3 Trained models

In summary, we train the following models:

• No references, pθ(y|x).
• 8 ground-truth references, pθ(y|x, r∗1, . . . , r∗8)
• 20 ground-truth references, pθ(y|x, r∗1, . . . , r∗20)
• 20 ground-truth titles, pθ(y|x, r̃∗1, . . . , r̃∗20)

All models use the same hyper-parameter and training settings. We truncate each (x, rk) to 200
tokens and truncate y to 500 tokens. We use bart-base, batch size 16, gradient clipping 1.0, and
Adam with learning rate 2e-5. We evaluate validation loss every 2 epochs, and train for up to 500k
steps with patience 5 epochs. We select the model state with lowest validation loss for final evaluation.

B.4 Full proof generation

Let pθ(y|x, R) denote a trained model (§B.3). Let ŷ ∼ F(pθ,x, R) denote decoding a token
sequence ŷ = (w1, . . . , wL, 〈eos〉) given model pθ and input theorem x and (optionally) reference
knowledge R, using decoding algorithm F . As F we use beam search with beam size 20. We
segment the decoded token sequence into steps by splitting on \n\n, which follows the formatting in
the training proofs.

B.5 Next-step suggestion

We use a model pθ(y|x, R) trained for full-proof generation (§B.3). We decode yt ∼
F(pθ, (x,y<t), R), where yt = (w1, . . . , wLt , \n\n) is a next-step for the proof.

Note that our model provides the same set of references for all next-step predictions, which may be a
limitation.

8

	Introduction
	Tasks
	Evaluation metrics.

	Methods
	Experiments
	Conclusion
	Dataset Details
	Implementation Details and Experimental Setup – BART/FID
	Intermediate denoising training
	Fusion-in-Decoder
	Trained models
	Full proof generation
	Next-step suggestion

