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Abstract

Manipulatives used in the right way help improve mathematical concepts leading
to better learning outcomes. In this paper, we present a phygital (physical +
digital) curriculum inspired teaching system for kids aged 5-8 to learn geometry
using shape tile manipulatives. Combining smaller shapes to form larger ones
is an important skill kids learn early on which requires shape tiles to be placed
close to each other in the play area. This introduces a challenge of oriented
object detection for densely packed objects with arbitrary orientations. Leveraging
simulated data for neural network training and light-weight mobile architectures, we
enable our system to understand user interactions and provide real-time audiovisual
feedback. Experimental results show that our network runs real-time with high
precision/recall on consumer devices, thereby providing a consistent and enjoyable
learning experience.

1 Introduction

Manipulatives are objects used to represent abstract concepts explicitly and concretely [12, 19, 20,
21, 22]. They have been used to teach math at all grade levels for a while now [3]. In a comparative
study [7] with first grade students, we see that the use of tangible manipulatives increases action
possibilities which led to a positive impact in children’s mathematical abilities. Using manipulatives
not only improves mathematical concepts but also helps students construct their own mathematical
understanding thereby providing a richer learning experience [5]. However, manipulatives on their
own have very little meaning and provide maximum benefit when paired with teacher guidance
in a comprehensive and well planned setting [18]. This is also not scalable outside of a school
environment.

AR based solutions such as ARMath [6] present a mobile AR platform that recognizes everyday
objects and turns them into manipulatives. Mixed reality learning systems [8, 9, 11] combine
manipulatives with virtual feedback. However, issues such as difficult hand-eye coordination and
device stability limit the practical use of AR based methods. By combining physical manipulatives
with a digital game using reflective artificial intelligence technology (RAIT) [1], we present a hands-
on play-based learning system for teaching mathematics to kids. Our setup seen in Fig. 1 consists
of a user tablet mounted on a base, an angled mirror called reflector, and shape tile manipulatives.
RAIT through the reflector enables the front camera of the device to "see" the table surface as the
user interacts with the manipulatives.

In this work, we focus on teaching geometry to grades 1-2 through a digital game using shape tile
(e.g., semicircle, triangle, square) manipulatives. The core objective of the game is to create food
ingredients from geometric shapes for digital characters. Some of the geometric skills that we cover
are to identify and name shapes, to compose and partition shapes and to reason with shapes and their
attributes. As an example, shape composition for a mushroom ingredient can be seen in Fig. 2. To
provide feedback through the game, we need to detect the 2D pose of the shape tiles placed close
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Figure 1: Phygital setup with a user device, a
reflector and base. The forward facing camera is
able to see the manipulatives placed on the table-
top due to the angled mirror inside the reflector.

Figure 2: Shape tile manipulatives placed on
a playmat. Smaller tiles are combined to form
larger shapes. ex. two dark-green quarter circles
and two red right angle triangles can be placed
together to form a mushroom ingredient.

to each other. Further, to scale to users across the globe, the system has to run real-time seamlessly
on user devices from inexpensive low-end tablets to high-end ones. Our contributions are three part.
First, we present a phygital system for learning geometry using shape tile manipulatives for grades
1-2. Second, we introduce a synthetic data generation system for neural network training and third,
our proposed oriented object detection network addresses the aforementioned challenges with high
precision/recall thereby providing an engaging, consistent and enjoyable learning experience.

2 Setup

The hardware setup consists of a user device, a base, an angled mirror called reflector, and shape tile
manipulatives. The device is mounted on the base and the reflector is placed on top of the front facing
camera enabling the device to capture the tabletop play area as depicted in Fig. 1. The manipulatives
themselves are designed to be simple and relatively inexpensive. They are made from cardboard and
do not have any electronic or magnetic components. Their appearance is designed to match the theme
of the game thereby avoiding any obvious visual markers or codes which provides a cohesive user
experience. We use the terms tiles and manipulatives interchangeably throughout the paper.

3 Method

Apart from the physical manipulatives, our system consists of a digital game and a computer vision
module. A typical user flow begins with the digital game character asking the user to build an
ingredient using geometric shape tiles. Kids interact with the system by placing and moving the tiles
on the play area. Our unique hardware setup enables us to compute an accurate bird’s-eye view (BEV)
image used in our CV pipeline. The game through the CV module predicts the id, location, and
orientation of the manipulatives and provides audiovisual feedback to the user based on certain rules.
For example, in Fig. 2, the stem of the mushroom ingredient can be built using two green rectangle
tiles or two red right angled triangles. In the following, we will elaborate on the data problem and the
architecture used for on-device object detection with orientation prediction.

3.1 Data Scarcity

Our product is fully COPPA compliant, and that means we don’t collect images from our customers.
However, we do have the ability to collect limited data from beta testing and by using the system
ourselves, but this in most cases isn’t enough for our network training efforts. To tackle this challenge,
we use data augmentation along with synthetic data generated using 3D models of our manipulatives
in a Unity game engine [23]. We use a custom built synthetic data generation system that takes
images of the manipulatives, generates 3D meshes as they would look in real life, and places them in
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Figure 3: Simulated data generation using Unity Perception SDK [24] pipeline. We primarily vary
tile and scene configurations.

different configurations on a virtual tabletop. We vary each scene using different camera parameters
and lighting conditions as shown in Fig. 3. This enables large amounts of annotated data to be
generated for pre-training making the model robust to difficult conditions in the real world.

3.2 Network Architecture

Figure 4: Network Architecture

To provide a smooth and prompt user experience, we need to run network inference on-device in
real-time. This constraint requires us to build lightweight neural networks which are time and memory
efficient. Our network is based on the SSD [15] object detection architecture with MobileNet [13]
backbone as shown in Fig. 4. The outputs from the MobileNet backbone are fed to two classification
heads and one regression head to predict object class, orientation class and the bounding box offsets.
We will discuss more details in the following sections and in the appendix.

Classification head: The classification head takes the output produced by the backbone network at
different scales and outputs the classification score for each object class. The confidence is obtained
using a softmax operation and the loss is computed using focal loss [16].

Orientation head: Composition of shapes ie. using smaller shape tiles to form a larger shape is a
key skill we focus on in this game. For this, apart from detecting the location of the tiles, we also need
to detect orientation with high accuracy. To predict continuous orientation of objects in the range
0− 360◦, we cannot directly perform regression because of its discontinuity in the representation
space. We discretize the 0− 360◦ range into N unique orientations which are G = 360/N degrees
apart and convert the continuous prediction task into an N-class classification task [14]. Each training
sample is assigned one of the N class labels based on its proximity to the discretized orientation bin.
We set N = 48, where the orientation head outputs a confidence score for each class. The loss is
calculated using focal loss. A potential downside of this approach is the loss of information introduced
by the discretization step. However, we find this approach more stable in practice compared to a
regression based approach.

Regression head: The regression head also takes the output produced by MobileNet backbone at
difference scales and outputs the prediction regression offsets for each bounding box.
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4 Experimentation and Results

We evaluate the performance of our models on both the F-score and inference time as both are crucial
for a smooth user experience. For the backbone network, we experiment with MobileNet and VGG
architecture. Within models of the same backbone, version 1 is wider compared to version 2 (see
architecture in Appendix A). For training, we use negative sampling ratio as 1 and set the optimizer
to ADAM with learning rate as 0.0003. The models are pre-trained on 15,000 simulation images and
fine-tuned on 5800 real world images. Roughly 20% of the real images from Beta testing volunteers
are used for hyperparameter tuning.

Table 1: Detection results using difference models

Model Recall Precision F-score Inference time(ms)

Mobilenet Backbone 1 99.04 99.57 99.30 22.25
Mobilenet Backbone 2 99.57 98.83 99.20 10.81
VGG Backbone 1 98.83 99.46 99.14 66.86
VGG Backbone 2 99.36 97.99 98.67 17.83

During forward pass, the network predictions are passed through decode layers that consists of
non-maximum suppression and an output layer that maps network outputs to individual vertices of
the shape polygons. The precision/recall and F-score metrics are obtained using the test set consisting
of images captured from play sessions with different users in different environment conditions. The
predicted vertices are matched to the ground-truth vertices to obtain the above metrics. From Table
1, we see that models with MobileNet backbone achieve a better F-score compared to the models
with VGG backbone while running with a much shorter inference time. We show model predictions
mapped to shape polygons drawn on a few images from the test set in Fig. 5.

(a) (b) (c) (d)

Figure 5: Model predictions mapped to shape polygons on test set. In images (a) and (b) we see that
all the tiles are correctly detected whereas (c) and (d) have missed detections.

5 Conclusion

By bridging the gap between a digital game and tangible interactions with shape tile manipulatives
through reflective AI, we introduce a novel way of interaction for kids to engage and learn geometry
while having fun. We presented a light-weight neural network for dense oriented object detection
that supports real-time performance on a wide range of consumer tablets. Using synthetic data, we
generate random shape compositions that are difficult to obtain in real images making the network
more robust to real-world variations. By adopting a game-centric approach, we keep the experience
non-repetitive and engaging for kids. For future work, we would like to cover different skills such as
addition, subtraction, measurement and counting, etc.
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