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Abstract
Relation extraction is an important foundation for many natural language under-
standing applications, as well as geometry problem solving. In this paper, we
present GeoRE, a relation extraction dataset for Chinese geometry problems. To
the best of our knowledge, GeoRE is the first Chinese relation extraction dataset
about geometry problems. It consists of 12,901 geometry problems on 43 shapes,
covering 19 positional relations and 4 quantitative relations. We experiment with
various state-of-the-art (SOTA)models and the best model achieves only 70.3% F1
value on GeoRE. This shows that GeoRE presents a challenge for future research.

1 Introduction

Geometry is a subject that studies the structure and properties of space. It is the basic content of
mathematics. In recent years, geometry problem solving has been gaining more attention in NLP
and AI-EDU community [17, 16, 9, 15]. Solving geometry problems is a compulsory course for cul-
tivating students’ abstract thinking and spatial perception in high school education. According to the
natural language description of the given problem and the corresponding diagram, it needs to identify
geometric relations, apply theorem knowledge, and perform algebraic calculations to derive the nu-
merical value of the answer. The above process is extremely complicated and the step of identifying
and extracting geometric relations is foundation. Once the geometric relations in the geometry prob-
lem cannot be accurately identified, the geometric problem cannot be solved correctly. Although
some well-labeled datasets [12, 1, 17, 16] for solving geometric problems have been proposed, the
corpus size is very small and these datasets are all in English. To this end, a new large-scale Chi-
nese relation extraction dataset named GeoRE that aims to extract geometric relations from the given
geometry problem text, is proposed in this paper.
As Figure 1 illustrates, given a geometry problem, our corpus annotates shapes, positions, values,
and relations. A geometric relation triplet consists of two or three entities and a relation between
them. These triplets act as an important role of human knowledge and explicitly or implicitly hidden
in the plain text. Extracting these geometric relational facts could benefit downstream applications,
e.g, geometry problem solving and geometry diagram drawing.
Different from the traditional general relation extraction (RE) dataset, GeoRE is a relation extraction
corpus focusing on specific domains. It consists of 12,901 geometry problems on 43 shapes, covering
19 positional relations and 4 quantitative relations, all labeled by 6 college students spending a total
of 850 man-hours. GeoRE has significant geometric domain characteristics:
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在等腰直角三角形DBC中，角BDC等于90度，BF平分角DBC，与CD相交
于点F，延长BD到A，使DA等于DF。求证：三角形FBD与三角形ACD全等。
In the isosceles right triangle DBC, the angle BDC is equal to 90 degrees. BF 

bisects the angle DBC and intersects the CD at point F. BD is extended to A  

making DA is equal to DF. Proof: Triangle FBD and triangle ACD are congruent.

Annotators check geometric question：

Annotators create：

形状(shape)

等腰直角三角形
(Isosceles Right Triangle )

DBC

角(Angle) BDC, DBC

线段(Line Segment) BF, CD, BD, DA, DF

点(Point) F, A

位置(Position) 交(Intersect), 平分(Bisect)

数值(Value) 90

数量关系
(Quantitative Relation)

等于(Equal): (BDC, 90)，(DA, DF)

全等(Congruent): (FBD, ACD)

位置关系
(Positional Relation)

交(Intersect): (BF, CD, F)

平分(Bisect): (BF, DBC)

The quantitative and positional relations of shapes

Figure 1: Our corpus annotates shapes, positions, values, and relations according to the given geom-
etry problems. The example contains multiple shapes and relations.

i. The shapes in the geometry problems are represented by a sequence of letters. It can easily cause
ambiguity in reference. For example, the DBC in Figure 1 can refer to either an isosceles right
triangle DBC or an angle DBC.

ii. A lot of geometric symbols in the geometry problems, such as ⊥, ∥,∠,⌢,⊙,≡,∼=,△, etc.

iii. There are many entities and relationships in each geometry problems, and the same entity has
different relations with multiple entities.

To assess the task difficulty, we experiment with several SOTA models and the best model only
achieves a 70.3% F1 value. This suggests that general RE models still have a large room for im-
provement on the geometric relation extraction dataset.

2 Corpus Construction
All shapes, positions, values and relations are labeled and reviewed by 6 Chinese college students.
As shown in Figure 2, we develop our dataset in three steps, spending a total of 850 hours of human
labor: section 2.1 Dataset Collection and Cleaning, section 2.2 Semi-automatic Generation of Entity
Relation, section 2.3 Review and Checking.

2.1 Dataset Collection and Cleaning

The corpus about News and encyclopedias can be easily collected from the website of Wikipedia
and People’s Daily. However, it is difficult to collect enough data from a website for the geometry
problems.
To tackle this issue, we firstly search on the Internet with the keyword-几何题库 (geometry problems
bank). Then, we manually filter out the list of websites to be crawled from the returned results.
Finally, we use the urllib library to request HTML and Beautiful Soup 4 1 to parse the HTML node
to get geometry problems.
The crawled geometry problems are messy and need to be cleaned up. We unify the format and letter
case, delete redundant blank characters, and complete the incomplete question.

1https://www.crummy.com/software/BeautifulSoup/
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• 12,901 questions

• 150 man-hours

Dataset Collection 
and Cleaning

• Manually annotate 3,000 
questions (100 man-hours)

• Automatically annotate 
and manually check 9,901 
questions (250 man-hours)

Semi-automatic 
Annotation of Entity 

and Relation

• 350 man-hours

Review and Checking

Figure 2: The annotation process of our GeoRE corpus.

2.2 Semi-automatic Annotation of Entity and Relation

For cleaned 12,901 geometry problems, we ask six college students to annotate shapes, positions,
values and relations. Since the shapes and relations of geometry problems are limited, we use a
semi-automatic generation method to annotate entity and relation. First, each student manually an-
notates 500 questions to find out what shapes, positions, values, and relations are roughly present
in the dataset. Then, we write regular expressions according to the situation to roughly annotate
the question automatically. Finally, the automatically annotated 9,901 questions are assigned to the
annotator for correction.

2.3 Review and Checking

Once the geometry problems is labeled, we ask a different annotator to review and check if the shapes
and relations are right. For a geometry problems with multiple possible annotations, the reviewers
double check whether the annotation is correctly labeled under our protocol.

2.4 Dataset Statistics

Our corpus has 12,901 geometry problems. Each question has a maximum of 456 characters and a
minimum of 10 characters. The average length of the question is 57. Different numbers of questions
are distributed in the interval from 10 to 456 and a large number of questions with a length of 10-100.
For the distribution of question length, see Appendix A. GeoRE contains realistic data extracted from
theweb and covers most of the shapes and relations in elementary geometry. Line Segment, Intersect,
and Equal are the most frequent items, and the amount of shapes and relations is uneven. A large
number of entity-relation and such uneven distribution make it more difficult to extract relations.
For a list of shapes and relations, see Appendix B.

3 Experiments

3.1 Benchmark Approaches

In order to analyze the difficulty of our corpus, we experiment with several state-of-the-art relation
extraction models.

• NovelTagging [26] proposes a novel tagging scheme that incorporates both relation roles
and entity types and converts the joint extraction to a sequence tagging problems.

• CopyMTL [23] generates the triplets sequentially using copymechanism, and appliesmulti-
task learning to solve the problems of generating multi-token entities.

• ETL-Span [22] applies a novel decomposition strategy, which first distinguishes all head
entities, and then identifies corresponding tail entities and relations.
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Table 1: Main results of the relation extraction models on NYT24 and GeoRE.

Model NYT24 GeoRE
P R F1 P R F1

NovelTagging[26] 0.621 0.375 0.422 0.568 0.197 0.292
CopyMTL[23] 0.757 0.687 0.720 0.593 0.556 0.568
ETL-Span[22] 0.841 0.746 0.791 0.701 0.706 0.703

3.2 Experimental Results

We take standard Precision (P), Recall (R) and F1 score as our evaluation metrics. A triplet is con-
sidered to be correctly extracted if and only if its relation type and entities are exactly matched. We
evaluate the performance of several models on our test set. These models are SOTA on the New
York Times (NYT24) dataset. For the final training dataset, we randomly split the examples into
8,000 train, 2000 dev, 2901 test.
Table 1 presents the experimental results. A closer inspection of the table shows the performance of
models that performed well on the NYT24 dataset significantly are reduced on our test set. What
stands out is that the F1 value of CopyMTL drops by nearly 16%. It indicates that our corpus is
challenging. For the task of extracting geometric relations, the SOTA models still have a large room
for improvement.

4 Related Work
Table 2: Comparison of relation extraction datasets.

Dataset Name Level Relations Train Test Manual
Annotation

SemEval 2010 Task 8 [6] sentence 18 8,000 2,717 Yes
NYT10 [13] sentence 52 455,412 172,415 No
NYT11 [8] sentence 24 335,843 1,450 Test
NYT24 [24] sentence 24 56,196 5,000 No
NYT29 [18] sentence 29 63,306 4,006 No
WebNLG [24] sentence 216 5,519 703 Yes
ACE05 [19] sentence 7 9,038 1,535 Yes
CoNLL04 [14] sentence 5 1,153 288 Yes
GDS [11] sentence 4 13,161 5,663 Yes
TACRED [25] sentence 41 90,755 15,509 Yes
FewRel 2.0 [4] sentence 100 56,000 14,000 Yes
WikiReading [7] document 884 14.85M 3.73M No
DocRED [21] document 96 4,053 1,000 Yes
GeoRE sentence 23 10,000 2,901 Yes

Table 3: Compare with the geometric problem solving dataset.

Dataset question word shape grade operator type
GeoShader [1] 102 / 4 6-10 {+,−,×,÷, 2,

√
}

GEOS [17] 186 4343 4 6-10 {+,−,×,÷, 2,
√

}
Geometry 3K [12] 3002 36736 6 6-12 {+,−,×,÷, 2,

√
, sin, cos, tan}

GeoRE(ours) 12901 735357 43 6-12 /

Relation extraction is a basic task of natural language processing that attracts much attention. In
recent years, relation extraction datasets have been released continuously. We present the basic
information of the currently widely used relation extraction datasets in Table 2. Compared with
those datasets, our GeoRE is a medium-scale sentence-level manually annotated dataset. Different
from the traditional Wikipedia and News corpus, our corpus is domain-specific (geometry problems)
and aims to extract positional and quantitative relations of geometric shapes in the text. In addition,
we compare with the dataset for solving geometric problems in Table 3. It can be seen that our corpus
has the largest number of questions and geometric shapes.

5 Conclusion
In this paper, we introduce GeoRE, a large complex and domain-specific relation extraction dataset,
which directly benefits both NLP and AI-EDU communities. Experimental results on several state-
of-the-art models on GeoRE suggest plenty of space for improvement.
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A Distribution of question length
Figure 3 is the distribution diagram of the question length in GeoRE. Part B is the complete illustra-
tion and Part A is an enlarged view of B from 0 to 25. In general, the question lengths in the GeoRE
dataset range from 10 (minimum) to 456 (maximum). Among them, the number of questions in the
range of 10 to 100 accounted for 96% of the total, and the number of samples with a length of 59 are
the most.

B Distribution of shapes and relations
Table 4 is a list of shapes and relations in the GeoRE dataset, including 43 shapes, 19 positional rela-
tions, and 4 quantitative relations. In order to better analyze the distribution, we make statistics on all
shapes and relations. The distributions of shapes, positional and quantitative relations, respectively
shown in Figure 4-6.
Figure 4 shows the distribution of shapes in the GeoRE dataset. It can be found that Line Segment,
Point, and Triangle are themost numerous shapes. There are also a certain number of common shapes
such as Angle, Parallelogram, and Rectangle. Figure 5 is the distribution of positional relations. It
can be seen that Intersect, Perpendicular, and Parallel are the most numerous positional relations.
A certain number of common positional relations such as On, Midpoint, and Bisect are also shown
in the figure. The distribution of quantitative relations in the GeoRE dataset is shown in Figure 6.
Equal is the most quantitative relations in the figure. The remaining three quantitative relationships
are relatively small. Through the above statistics on shapes and relationships, we can find that the
GeoRE dataset covers a variety of geometric shapes and relations. The proposal of GeoRE not only
enriches the relation extraction community, but also proposes a new benchmark for the identification
of geometric relations for solving geometry problems.
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Figure 3: Distribution of question sizes in GeoRE. Part B is the complete illustration and Part A is
an enlarged view of B from 0 to 25.
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Figure 4: Distribution of shapes in the GeoRE.
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Table 4: List of shapes and relations.

43 shapes
中点

(midpoint)
等腰三角形

(isosceles triangle)
菱形

(rhombus)
内接三角形

(inscribed triangle)
内接正方形

(inscribed rectangle)
正方形
(square)

平行四边形
(parallelogram)

半圆
(semicircle)

钝角三角形
(obtuse angle)

切点
(tangent point)

直角边
(right-angled edge)

扇形
(sector)

三角形
(triangle)

等腰直角三角形
(isosceles right triangle)

垂线
(perpendicular)

点
(point)

对角线
(diagonal)

弦
(chord)

直线
(line)

长方形
(rectangle)

等腰梯形
(isosceles trapezoid)

直角三角形
(right triangle)

半径
(radius)

割线
(secant line)

锐角三角形
(acute triangle)

圆
(circle)

切线
(tangent line)

斜边
(oblique edge)

梯形
(trapezoid)

射线
(ray)

外接圆
(circumcircle)

中线
(midline)

弧
(arc)

角
(angle)

等边三角形
(equilateral triangle)

四边形
(quadrilateral)

垂足
(foot of perpendicular)

高
(alititude)

劣弧
(minor arc)

矩形
(rectangle)

线段
(line segment)

直角梯形
(right trapezoid)

直径
(diameter)

19 positional relations
垂直平分

(perpendicular bisect)
过

(through)
部分重叠

(partial overlap)
内接

(inscribed)
外接

(circumscribed)
对称

(symmetry)
延长

(production)
同侧

(ipsilateral)
交

(intersect)
平行

(parallel)
两侧

(both sides)
平分
(bisect)

上
(on)

共用
(share)

垂直
(perpendicular)

外切
(to touch externally)

切
(tangent)

外
(out)

落在
(on)

4 quantitative relations
等于
(equal)

全等
(congruent)

相似
(similar)

倍数
(time)
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1000
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Figure 5: Distribution of positional relations in the GeoRE.
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